Vibrational averaging of the chemical shift in crystalline α-glycine
نویسندگان
چکیده
Averaging of the chemical shift over the molecular motion improves the simulated data and provides additional information about the temperature dependence and system dynamics. However, crystal modeling is difficult due to the limited precision of the plane-wave density functional theory (DFT) methods and approximate vibrational schemes. On the glycine example, we investigate how the averaging can be achieved within the periodic boundary conditions at the DFT level. The nuclear motion is modeled with the vibrational configuration interaction, with other simplified quantum anharmonic schemes, and the classical Born-Oppenheimer molecular dynamics (BOMD). The results confirm a large vibrational contribution to the isotropic shielding values. Both the first and second derivatives of the shielding were found important for the quantum averaging. The first derivatives influence the shielding mostly due to the anharmonic character of the CH and NH stretching modes, whereas second derivatives produce most vibrational corrections associated with the lower-frequency vibrational modes. Temperature excitations of the lowest-frequency vibrational states and the expansion of the crystal cell both determine the temperature dependence of nuclear magnetic resonance parameters. The vibrational quantum approach as well as classical BOMD schemes provided temperature dependencies of the chemical shifts that are consistent with the previous experimental data.
منابع مشابه
The Effect of Aluminum, Gallium, Indium- Doping on the Zigzag (5, 0) Boron-Nitride Nanotubes: DFT, NMR, Vibrational, Thermodynamic Parameters and Electrostatic Potential Map with Electrophilicity Studies
Influence of Aluminum, Gallium, Indium- Doping on the Boron-Nitride Nanotubes (BNNTs) investigated with density functional theory (DFT) and Hartreefock (HF) methods. For this purpose, the chemical shift of difference atomic nucleus was studied using the gauge included atomic orbital (GIAO) approch. In the following, structural parameter values, electrostatic potential, thermodynamic parameters,...
متن کاملDynamic and Thermodynamic Properties of Crystalline Glycine Polymorphs from Multi-Temperature X-ray Diffraction Data
Introduction Glycine having three polymorphs (α, β and γ) at ambient conditions differs in the arrangement of zwitterions in the hydrogen-bonding network and the physical and chemical properties. For insight into the differences in the relative thermodynamic stability of the glycine polymorphs, we apply a novel method of concurrent analysis of multi-temperature atomic displacement parameters (A...
متن کاملEffect of CH O Hydrogen Bond Length on the Geometric and Spectroscopic Features of the Peptide Unit of Proteins
A formamide molecule is allowed to form a CH O H-bond with a glycine dipeptide in both its C5 and C7 internal conformations. As this intermolecular H-bond is elongated, the contraction of the CAH covalent bond is monitored, as is its vibrational stretching frequency and intensity, along with NMR chemical shifts of the atoms involved in the H-bond. The degree of shortening of the CAH bond become...
متن کاملImproved Cross Validation of a Static Ubiquitin Structure Derived from High Precision Residual Dipolar Couplings Measured in a Drug-Based Liquid Crystalline Phase
The antibiotic squalamine forms a lyotropic liquid crystal at very low concentrations in water (0.3-3.5% w/v), which remains stable over a wide range of temperature (1-40 °C) and pH (4-8). Squalamine is positively charged, and comparison of the alignment of ubiquitin relative to 36 previously reported alignment conditions shows that it differs substantially from most of these, but is closest to...
متن کاملSpectroscopy, Structural, and Optical Investigations of NiFe2O4 Ferrite
Ni ferrite crystalline material is synthesized using a sol-gel method at two different temperatures. The vibrational and stretching modes, crystalline phase, size distribution and morphology of the products are investigated via Raman back-scattering and Fourier transform infrared (FTIR) spectroscopy, XRD and FESEM, respectively. Vibrational modes of spinel ferrite are observed at Raman and FTIR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2012